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CHEMILUMINESCENCE DETECTION OF PEROXYL RADICALS 
AND COMPARISON OF ANTIOXIDANT ACTIVITY OF 

PHENOLIC COMPOlJNDS 
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The aim of this work wa~ 10 examine the ehemiluminescent (CL) mtrhod for quick comparison of antioxidant proper
ties of new compounds and hiological 'ampl('s. 2.l'-Azobi~(2-nllljuin"'l'rOllllne)dihydrol:hloride (AAI'H) wu used 115 a 
sOllne of free rlldil:IIIJ lInd luminol co obtain bigh long luting CL l'ht Cl. inuea~ed with rh" pH. Two uemplary 
compounds WHe compared: Trolox. 11 \tiller ~lJluble homologue of vitamin Ii. and butylated hydroxy toluene (BHT), a 
(ummcrcially used anlioxldant. Trolox quen.:ht'd CL transiently but almost completely, IIl1d 91 Ihe cum:elllrHllon 
about 100 times lower (10 n\l) thlln BH r. Tile duration or quenching. called "tile induction lime" by other aUlhors. 
WIIS linearly relatr-d to Trolox concentration. On th .. mlllnll"), BHT qucnchcu CL only partilllly. depending un its 
~(lncentnltioll. III llur experimental conditions 8.5 J.lM BliT quenched SO% Ilf Cl .. Rel"tionshifl~ httw("tn structure 
and activity of[he te~rf:d ~ompoullds are ui.cu.scd. 

INTRODUCTION 

Compounds with antioxidant properties have been 
in common use in industr). espec:ially food indus
try fbr many years. Lots of these compounds were 
found IO be carcinogenic: or toxic, whi<.:h excluded 
them at least from the usage in food industry On 
the other hand, human health is dependent on an 
efficient control of tree radicals in the organism, as 
shown by several diseases directly or indirectly 
involving ex!.:cssive levels of free radicals. There
fore the extensive search has been launched for 
new potentially useful antioxidants for food in
dustty and human health management. 

The first target of reactive oxygen species (ROS) 
from exogenous sources are lipids and proteins in 
the plasma membnmc. J .ipid peroxidation is a 
particularly dangerous process. It does not stop 
with the oxidation of the first subsmllcs hut con
tinues as a chain n:ac:lion resultmg In the formation 
of conjugalcd dicnes. lipid peroxyl radicals and 
hydroperoxides (Smimoft~ 1995; Blokhina, Fagcr
sredt & Chirkova, 1999). Peroxyl radicals in rurn 

can react with new lipid molecules, thus propa
gating the process (FrankeJ, 1985). Decomposition 
or lipid hydroperoxidcs results in different reactive 
secondary products such as tree radicals (Ao
shima, Kadoya, TanigUl:hi. Satoh & Hat:maktl, 
1999) or 4-hydroxy-2-nonenal (Uchida & Stadt
man, 1992). Lipid peroxidation affects also the 
activities of different mernbmlle·hounu proteins 
({ Jchidll & Stadtman, 1992). Evenmally, It leads to 
changes in membrane permeability and to the 
destruction of the whole cell (Rauchova, Ledvink
ova, Kalolls & Drahotll, 19(5). 

The determination offormation, propagation and 
action of free radicals in cells is complicated. 
Then.:fon: in vitrn study in a simplified model 
systems is often required. A variety of methods 
have been developed to assess the oxidation or 
autoxidation of lipids. Different methods are stud· 
ied for the effective rough screening of antioxidant 
potential of various compounds. Some of them are 
already comrnen:ially availahle. However, lots of 
these methods have a limited senSitivity or speci
ticiry, others are either too invasive or not adapt-
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able for human cells, The standard methods for 
detection I1pid peroxidation are: electron spin 
resonance (ESR); spin trapping; assay for thiobar
bituric acid reactive substances (TBARS): detec
tion of malondialdehyde (MDA) by direct methods 
(such as HPLC); detection of other oxidation 
products from polyunsaturated fatty acids (PUF A) 
such as 4-hydroxy-2-nonenal Of diene conjugation; 
quantification of lipid hydroperoxides; detection of 
oxidation products from lipids other than PUF A 
(e,g. cholesterol); and chemiluminescence methods 
(Rauchova, Drahota. & Knudclova, ! 999~ Pyron, 
1989). 

Chemiluminescence (CL) is a potentially sensi
tive method. It permits not only the evaluation of 
the end products of reaction of cell constituents 
with free radicals, but also the observation of the 
reaction kinetics. Most CL methods use only a fcw 
chemical components which are excited by the 
reaction with free radicals, and have a high quan
tum yield of photon emission. Luminol is often 
used as a light source after the excitation by dlfter
ent kinds of free radicals, including peroxyl radi
cals. 

Because of the simplicity and accuracy, ther
mally decomposited peroxides, hyponitrites lilld 
azo compounds are used 8..'\ free radical initiators. 
Azo compound::; undergo thermal decomposition 
without either enzymes or biotransformation. This 
yields molecular nitrogen and two carbon cenrered 
radicals R' (Fig I). The carbon radicals may form 
pairs or recombine to more stable prodUCL, hut lots 
ofthem react rapidly with oxygen and give peroxyl 
radicals R02' (Halliwel & Gutterige. 1999). 
2,2' -Azobis(2-amidinopropanc )dihydroc h loride 
(AAPH) is oftcn used as a source of hydrophilic 
radicals (lIalliwel & Gutterige, 1999; Niki. 1990; 
Zanocco, Pavez, Videla & Lissi, ! 989; I .i~si & 

BHT Trolox 

Clavero, 1990). At 37°C in neutral water, the half· 
life of AAPH is about 175 h and the generation 
rate of radicals is constant for the tirst few hours 
(Halliwe! & Gutterige, 1999). The rate of free 
radical generation (Ri) from AAPJI at 37°C equals 
1.36)( 10-6 moll"ls·t. 

Luminol luminescence induced by AAPH under 
different conditions and after the addition of vari
ous cnzymatic and non-enzymatic antioxidants was 
extensively investigated (Niki, 1987). The present 
study aims to examine the AAPH·luminol system 
as a fast and sensitive method to compare an anti
oxidant potential of new compounds with the 
commercially used lipid prolector RHT (butylated 
hydroxytoluene) and Trolox (a water soluble 
homologue of vitanlin E), a widely used reference 
compound (Fig. 1). 

MATERTALS AND METHODS 

Photons were counted in a EG&G Berthold 
LB96P mieroplaLc luminnmetcr at .10oe. The ex
periments were performed in a tinal volume of250 
].lIon white microplates in 0, I M Tris buffer, pH 
9.0. Dctcnnination of the pH dependence of lumi
nescence intensity was done in the Britton and 
Robinson buffer (0.04 M acetic acid, 0.04 M 
phosphnric acid, 0.04 M boric acid and 02 M 
sodium hydroxide). 25 III of freshly prepared 
AA PH (2,2' -azobis(2-amidinoprop8ne )dihydro
chloride) was pipetted into a microplate well. 
1 mM stock solution of luminol was diluted four 
times in dislilled watcr. ! 00 III of thc diluted solu
tion was automatically injected into the sample at 
the beginning of the measurement, the tested com
pound heing added hO s lat.cr. 

+ 1113 
~ NHr=,-1" N2 

yH J NH. 
I I + 

" C=NH
2 

NH2 CH l CH. 

Fig. I Chemical structures BHT, Trol{)x and AAI'H. BUT, llutylated hydroxyroluene. AAPH (2.2'-a7.ohis(2-amidinopro
pane)dihydmchloride) undergOO:i thermolYSIS With generatIOn ot'two alkyl radicals and nitrogen 
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40 mM st.ock solution of AAPH (Polyscience, 
USA) was prepared in distilled water. t mM stock 
solution ofluminol (Aldrich, Poland) was obtained 
by solubilisation in 0.1 M NaOH. to mM stock 
solutlon of Trolox (Aldrich, Poland) and 20 mM 
stock solution of BHT (Aldrich, Poland) were 
prepared in ethanol. 

RESULTS 

AA PH (2,2' -azobis(2-amidinopropane )dihydro
chloride) with luminol generates strong long last
ing luminescence (Fig. 2). During the first 3 h the 
luminescence rapidly decreases to 2500 relative 
light units (RLU). Afterwards the rate of decrease 
slows down gradually with the average slope of 
-41 RLUlh for the next 13 h. The CL declines to 
the background level after two weeks (data not 
shown). 

The CL intensity increa~es with the pH (Fig. 3). 
Below pH 7.0 CL is at the background level. From 
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pH 7.0 to 10.5 the light intensity increases linearly 
(t - 20 , R ..... ), afterwards it grows more rapidly. It is 
known tbat the CL of luminol-1I20 2 is remarkably 
high under a.lkaline conditions (pH 10-11; Lissi, 
Pascual & del Castillo. 1992 )_ We decided to 
perform our experiments at pH 9,0 which is still in 
The range of the buffering power of Tris. The lu
minescence in these conditions is approximately 
2500-3000 RLU (Fig. 3) which is about 100 times 
higher than the background, thus giving highly 
reproducible results. The steady state luminol CL 
intensity was decreased by antioxidants like 
Trolox or BHT. However, the light profile of the 
CL after Trolnx and BIlT addition was different 
(Fig. 4A, B). Addition of Trolox (in our experi
mental conditions over 10 nM) transiently quen
ched the luminescence. This period of time was 
earlier called the "induction time" (Tsugakoshi, 
Sumiyama, Nakajima., Nakayama & Maeda, 1998), 
after which Cl> intensity returns to previnus steady 
stale probably due to the Trolox consumption. The 
induction time (Fig. 4A) startS with the almost 
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0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Time [hJ 

Fig. 2. The time profile ()f luminol (100 j.lM) CL mduced hy AAPH (4 mM) at 30·C, Light intensity mClI$ured in rellltive 
light umts (RLU), SD ± 2 
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Fig. 3. Dependence of the Illminol CL intenSify on pI!. Luminol 100 ~tM, AAPH 4 mM; SD J. 2 
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Fig. 4. The profile of lurmnollummescence mtenSlty after ') rolox (A) IInd BHT (B) additIOn, Lummol, 100 I-lM; AAPH, 4 
mM; Trolox.40. 80 iUld 200 nM. HHT, 1, 10,40, ISO and 100 JlM, Arrows indicate Tmiml: and BH r addition, InductlOll 
time was evaluated by extrapolallon Ihe mllXlmum slopc 01 I'roio)( consumption to zero light mtenSlty, CL IDllIDltlon WlIS 

calculated from the subtracboll uf Co (1Iu: RLU value lor Ihe hghllDlen!uty III the absence of BH'i) and Cl (Ihe minimal 
RLU value for the light intensity after BHT addllu.m) 
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Fig. 5, Diagram of the induction tlmc as a function ot'Troiox conccnuation, Luminol, 100 IlM; AAI'H. 4 mM 

complete suppression of CL by the addition of 
Trolox, The end of the induction time is the point 
where the line approximating the curve (plot of the 
RLU in time) in its steepest position crosses the 

horizontal line approximating the curve position at 
The beginning of the induction time Gust after 
Trolox addition), Data. in Fig, 5 show a linear 
relation:-.hip (t - 56,8++) between the induction 
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rig 6, Diagram of the CL inhibition a.> U fUII~II(Jn of BH'1 concentration Lurnmnl, lOll 11M. AAPH, 4 mM 
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Fig. 7. Dependence orlhe CL inhibltiun by I3H r lA) and the lIlduclinn rime ofTlOlox (B) UlI pH, Lummol, 100 ).IM; AAPII, 
4 mM; UIlT, 10 IJ-M: Tmlo)(. 80 nM 

time llnd Trolax concentration within the range 
from 10 to 1000 nM. 

The antioxidanl properties of 13HT are different 
fmm Trolox (Fig, 113). Depending on BHT con
centration, the level of the CL decn:asc is differ
ent. The relationship bdween RHT concentration 
(ranging from 1 to I 00 ~lM) and CL inhibition is 
presented in Fig. 6. A good parameter to cmnparc 
the antioxidant activity of various compounds 
could be the concentration inhibiting 50% of 
chemiluminescence (IC50) which is about 8.5 tlM 
for I3HT in our experimental L:onditions. 

The CL inhibition caused by llHT is directly de
pt:mlt:d on pH (Fig. 7A). In the pH 8, 10 I-lM BHT 
inhibits 41.7% of CL, while in tht.: pH 12 - 86.3%. 

On the other hand the pH of samp1t.:s has not influ
enced the inductioll lime of Trolox (Fig. 78). The 
relation:-.hip between rhe CL inhibition and pH can 
he caused by the compound ionisation. 

DISCUSSION 

The lipid peroxidation process is accompanied by 
CL that coincides with the decomposition of hy
droperoxides, rather than the formation of secon
dfll'Y products. This er, is extremely weak at pho
tOll iluxcs below 104 pholons cm" S-I, Therefore it 
is imporlanr to use an appropriatt: CL enhancer. 
The propenies of luminol are characterised well 
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enough. In the presence of luminol, peroxyl radi
cals undergo trapping causing the light release. 
This process can be used for determination of the 
active radicals, for example radicals formed in 

peroxidation of lipids. The main drawback of (his 
compound is the necessity of use of non
physiological pH i.e. above 8.0 (Fig. 3). Surpris
ingly in the in vivo experiments on neutrophils or 
other cells, pH as low as 7.4 was successfully used 
(Mue!ler & Arnhold, 1995: Jakubowskl, Ertel, 
Biliitski, K~dziora & Banosz, \998). However, 

these systems are very complicated and luminal 
can he active in alkaline compartments nf cells 
such as mitochondria. 

The luminol-AAPH systems can be used to test 
various antioxidants. Lissi (Lissi er aL 1992; 
Lissi, Salim-Hanna, Pascual & de I Casti lio, 1995; 
Escobar, Cardenas & Lissi, 1997) attempted to 
explain the mechanism of luminol chemilumines
cence induced by ASAP (2,2' -azobis(2 -amidino
propane)hydrochloride) decomposition to peroxyl 
radicals. In this particular system the luminescence 

intensity rapidly reaches a maximum value and 
then remains almost eonstanl for several minutes 

CUssi et at., 1992). We obtained similar results 
using AAPH instead of ABAP. 

Fig. 4A and 4B show tlHit important differences 
in the quenching activity can occur even benNeen 
compounds with similar antioxidant groups. Both 
Trolox and BHT have a phenol ring .... ith an OH 
substituent (Fig. I). The OIl bond dissociation 
enthalpy, which is a very good parameter to pre
dict the antioxidant activity, i~ ~rnaller for a-to
copherol (78.2]) than for UIlT (81.02) (Lucarini, 

Pedriel1j & Pedulli, 1996). The exceptional anti
oxidant activity of (1.~I()e()pherol, which i~ due tu 

minimized 011 bond strength (Wayner, Lusztyk & 
I ngold, 1996) could be even stronger tor Tro lox, 
which differs from a-tocopherol by the carboxyl 
group. Trolox is active at extremely low concen
trations (Fig. 5) quenching most of CL. On the 
contrary in the case of BHT addition, the long 
lasting; partial CL inhibition takes place (Fig. 4A). 
The observed ditlerences between Trolox and 
BHT could be also uue 10 the charge of the mole

cules. In the pH range tested the great majority of 
Trolox molecules probably has a negative charge, 
due to the dissociation of the carboxyl group. 

Homolytic decay of AAPH generates two POSI

tively charged peroxyl radicals (Fig I). In contrast, 
at pH 9 the majority of BHT molecules is not 
charged. With the increase of pH, the OIl group 
starts to ionise thus facilitating the reaction with 
positively charged AAPH-derived free radicals. 
This could explain the more efficient CL inhibition 

by BrIT at higher pH (Fig. 7 A) and JlO impact of 
pH on the 'l"ro[ox induction time. Therefore lhe 

antioxidant properties of BHT can strongly depend 
on the pH. 
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